ELECTRON CLOUD EFFECTS AT APS

KATHERINE C. HARKAY

8th ICFA Mini-Workshop on Two-Stream Instabilities, Santa Fe, NM 2000 Feb 16-18

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

ACKNOWLEDGEMENTS

- R. Rosenberg
- G. Goeppner
- J. Gagliano
- M. McDowell
- I. C. Sheng
- J. Galayda
 - B. Yang
- L. Emery
- M. Furman, LBNL

OUTLINE

- Introduction
- Major findings
- Measurements
- Analysis
- Summary

INTRODUCTION

WHY STUDY ELECTRON CLOUDS IN THE APS STORAGE RING?

- Aluminum chambers, whose SEY > 1
- Big effect expected, but no evidence of electron cloud-induced instability prior to studies
- Large harmonic number (1296) and flexibility in varying bunch current and temporal distribution
- Opportunity to study with positron and electron beams (7 GeV)

GOAL OF STUDIES AT APS

- Characterize electron cloud for better prediction of conditions favoring beam instability
- Provide realistic limits on input parameters for existing models: photoelectron yield,
 SEY, space charge effects, reflectivity

INTRODUCTION (cont)

SUMMARY OF MAJOR FINDINGS AT APS

- Strong dependence of electrons on detector location
- Energy analysis of cloud enables distinction between primary and secondary components of distribution
- Beam-induced multipacting observed for BOTH positrons and electrons (lower amplification for latter)
- Bunch current-dependent saturation of electron cloud over bunch trains
- Surface conditioning effects
- Collective horizontal motion for long e+ bunch (ECI or normal impedance?)
- Pressure rise resulting from multipacting reduces the beam lifetime

MEASUREMENTS AT APS

EXPERIMENTAL SETUP

- 10 electron energy analyzers; 3 targets (Cu, Al, TiN)
- mounted on 5-m straight modified chamber (sector 30)
- local vacuum pressure
- collector current vs. retarding grid bias voltage (-300 V to +60 V)

MEASUREMENTS

- vary bunch current (1 4 mA/bunch) and spacing (min. 2.84 ns (0.85 m))
- time-integrated electron detector signals 1 15 nA/mA; target signals ~5μA/mA
- electron beam stored at present; collected data for positron beam prior to Oct 1998

Comparison of normalized current as a function of bunch spacing and current (10 bunches total)

Modified chamber (top view) showing locations of: electron detectors 1-10; BPMs a, b, and c; and targets A, B, and C. On right is cross-section schematic showing target & mounting of detectors/BPMs.

Synchrotron radiation fan at electron detectors 1-6; det 1 is 15 cm upstream from end absorber (EA6)

End absorber (EA6) a source of electrons, dominating detectors 1 - 3

Detector current as a function of distance from EA6, bunches widely spaced (few secondary electrons)

Total, normalized electron current per detector vs. distance from EA6 as a function of bunch spacing (10 bunches, 20 mA). Strong amplification for a bunch spacing, $t_{\rm b}$, of 20 ns; by comparison:

PEP-II: chamber HH (SS) 45 mm; $t_b = 13$ ns LHC: chamber HH (Cu) 22 mm; $t_b = 25$ ns

Electron energy distribution vs. bunch spacing

Bunch Train Effects on Pressure and Detector Signals

Bunch Train Effects on Pressure and Detector Signals

SURFACE CONDITIONING

ANALYSIS

Energy gain of electrons at wall accelerated by passing bunch (impulse kick approx):

$$\left(\frac{v}{c}\right)_{\text{max}} = \frac{2N_b r_e}{a}$$
; $K = \frac{mv^2}{2} = 10 \text{ eV}$; time to traverse 2a = 21 ns

where $N_b = 4 \times 10^{10}$ (2 mA/bunch); $r_e = 2.8 \times 10^{-15}$ m; a = half V aperture 0.021 m

Approx. electron cloud density from bombardment rate at wall (detector) (per mA):

$$\rho = \frac{\text{rate}}{vA} = 10^2 \text{ e-/cm}^2$$

where rate = $1 \text{ nA} = 6 \text{ x } 10^9 \text{ e-/sec}$; velocity = $2 \text{ x } 10^8 \text{ m/s } (10 \text{ eV})$; Area = 1 cm^2

- Calibration of electron cloud density: target photo-current vs. detector signal
- Simulation studies underway w/code developed at LBNL (M. Furman)
- Comparison with PEP-II results (M. Furman, S. Heifets)

Digitized transverse bunch position in a bunch train (4 consecutive turns) (e+, 50 bunches, 7-rf-bucket spacing, 89 mA). Max e-cloud for these conditions, but is this ECI?

SUMMARY

- Strong dependence of electrons on location; chamber structures (e.g. end absorbers) are local sources of primary electrons
- Energy analysis of cloud enables distinction between primary and secondary components of distribution
- Beam-induced multipacting observed for BOTH positrons and electrons (lower amplification for latter); consistent with expected kinetic energy of cloud electrons
- Bunch current-dependent saturation of electron cloud over bunch trains
- Surface conditioning; different for primary and secondary components
- Collective horizontal motion for long e+ bunch trains; driving source still under investigation (ECI or normal wakefield?)
- Pressure rise resulting from multipacting reduces the lifetime; need to avoid certain electron bunch spacings